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Introduc)on	
Due	to	the	sparsity	of	available	measurements	at	the	surface,	satellite	pla9orms	con)nue	to	
be	the	best	current	avenue	for	precipita)on	assessment	on	a	global	scale,	yet	satellite	rainfall	
products	o;en	show	substan)al	disagreement	with	regional	valida)on	data,	par)cularly	at	
the	lowest	and	highest	rain	and	snow	rates.		This	is	par)cularly	an	issue	over	land	surfaces,	
where	commonly	used	passive	microwave	algorithms	are	sensi)ve	primarily	to	ice	sca?ering	
signals,	which	may	not	necessarily	correlate	with	precipita)on	at	the	surface	in	a	direct	
quan)ta)ve	or	consistent	way.		For	this	reason	algorithms	have	historically	been	empirical	in	
nature	and	valida)on	projects	inevitably	find	that	various	schemes	perform	well	in	areas	
similar	to	where	they	are	calibrated	and	tuned,	and	poorly	in	others.		This	type	of	approach	is	
necessary	due	to	the	high	emissivity	of	the	surface	in	the	microwave	channels,	along	with	its	
highly	dynamic	variability,	par)cularly	when	ice,	snow,	or	liquid	water	is	present	on	the	
surface.		NASA’s	Global	Precipita)on	Measurement	Mission	(GPM)	offers	an	important	and	
unique	opportunity	to	improve	upon	empirical	passive	microwave	retrieval	techniques	by	
enhancing	a	constella)on	of	passive	radiometers	with	a	core	satellite	that	includes	a	
collocated	ac)ve	precipita)on	radar.	The	collocated	PMW	and	DPR	observa)ons	are	used	in	
crea)ng	a	physically-based	precipita)on	profile	database	that	can	be	used,	along	with	
radia)ve	transfer	calcula)ons,	to	perform	consistent	retrievals	across	the	GPM	constella)on.	
	
Two	separate	issues	have	been	iden)fied	for	improvement	of	GPM	constella)on	retrievals	
over	land	surfaces	moving	forward	from	the	early	version	algorithms.	The	first,	accurately	
represen)ng	ice	sca?ering	in	the	retrieval	databases,	has	been	presented	previously	and	
implemented	in	the	version	5	GPROF	and	Combined	algorithms.	The	other	is	organiza)on	of	
the	retrieval	databases	over	land.			

	
	
	

Tools	for	Improving	GPM	Constella)on	Retrievals	Over	Land	
Sarah	Ringerud*1,2,	Christa	D.	Peters-Lidard2,	Yalei	You1		

(1)	University	of	Maryland-	ESSIC	(2)	NASA	Goddard	Space	Flight	Center,	Greenbelt,	MD	USA	(*sarah.e.ringerud@nasa.gov)	

Mo)va)on	

Implementa)on	

Suggested	Path	Forward	

 GPROF Rain Rate

-95 -92 -90 -87 -85 -82 -80

28

30

33

36

38

41

44

  
 

 

  
  
  

  

0 8 16 24 32 40

  89 GHz V-pol GMI Tb

-95 -92 -90 -87 -85 -82 -80

28

30

33

36

38

41

44

  
 

 

  
 

 

  
 

 

220

236

252

268

284

300
 

 DPR Rain Rate

-95 -92 -90 -87 -85 -82 -80

28

30

33

36

38

41

44

  
 

 

  
 

 

  
 

 

0

8

16

24

32

40
 

0 5 10 15 20
Rain Rate (mm/hr)

180

200

220

240

260

280

300

16
6 

G
H

z 
H

-p
ol

0-0.1
0.1-0.2
0.2-0.3
0.4-0.5

0 5 10 15 20
Rain Rate (mm/hr)

180

200

220

240

260

280

300

19
 G

H
z 

H
-p

ol

0-0.1
0.1-0.2
0.2-0.3
0.4-0.5

Database	

This	varies	greatly	on	the	instantaneous,	local	scale.	In	the	February	1,	2014	case	
study	shown	below,	a	retrieval	case	study	shows	the	GMI	retrieval	underes)mates	the	
heavy	precipita)on	in	the	convec)ve	areas	and	misses	much	of	the	snowfall	in	the	
northern	part	of	the	swath.	

Recent	valida)on	work	performed	by	
Kidd	et	al.	(QJRMS	2017)	shows	that	
the	GPROF	retrievals	over	the	eastern	
US	tend	to	overes)mate	in	comparison	
to	surface	radar.	The	DPR-Ku,	which	is	
used	to	create	the	retrieval	database,	
agrees	with	the	valida)on	data	quite	
well,	sugges)ng	an	algorithmic	issue.	
By	contrast,	GPROF	retrievals	are	
shown	in	the	same	study	to	
underes)mate	over	Europe.	

Conclusions	
Passive	microwave	precipita)on	algorithms	over	land	rely	on	ice	sca?ering	signals	to	retrieve	
precipita)on.	Bayesian	retrievals	such	as	GPROF	as	well	as	other	techniques	such	as	the	EPC	
method	of	Turk	et	al.	2017,	and	other	more	empirical	sca?ering-index	type	techniques	all	rely	
on	this	signal	in	some	way.	Therefore	for	accurate	GPM	precipita)on	constella)on	retrievals	it	
is	crucial	that	the	GPM	database	applied	to	constella)on	radiometers	both:		
1)  Accurately	simulate	the	rela)onship	between	sca?ering	and	precipita)on	
2)  Contain	robust	representa)on	of	possible	observed	precipita)on	profiles			
The	robustness	of	the	database	can	be	damaged	by	both	over-	and	under-stra)fica)on,	and	
therefore	care	must	be	taken	in	using	“smart”	constraints.	
This	work	suggests	that	by	incorpora)ng	soil	moisture	as	ancillary	data	into	the	algorithm,	
informa)on	about	changes	in	the	sca?ering	–	rain	rate	rela)onship	can	be	incorporated	into	
the	retrieval.	The	inclusion	of	soil	moisture	also	incorporates	informa)on	regarding	the	
dielectric	component	of	the	emissivity	which	heavily	influences	Tb	at	the	lower	microwave	
frequencies.	
Future	work	suggested	here	includes	inves)ga)on	of	the	soil	moisture-boundary	layer	
rela)onship	using	a	coupled	atmospheric-land	surface	model	for	inves)ga)on	into	the	links	
between	the	height	of	the	boundary	layer,	which	defines	the	sca?ering	signal,	and	soil	
moisture.	Understanding	of	this	rela)onship	on	a	physical	level	will	enable	determina)on	of	
the	best	form	of	implementa)on	into	the	retrieval	algorithm.	
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A	physically-based	Bayesian	type	scheme	
such	as	the	one	used	for	the	GPM	
constella)on	requires	both	accurate	
simula)on	of	GPM	core	observed	profiles	
for	use	in	the	constella)on	databases,	and	
robust	representa)on.	On	a	prac)cal	level,	
database	“smart	searching”	is	also	
necessary.		GPROF,	the	opera)onal	GPM	
constella)on	algorithm,	currently	
constrains	the	retrieval	search	over	land	
using	14	land	surface	classes	defined	as	
areas	with	self-similar	emissivity	
climatologies.				
					Previous	work	along	with	examples	
shown	here	using	the	full	year	GPM	
database	suggest	that	the	soil	moisture	
field	contains	important	informa)on	about	
the	sca?ering-rain	rate	rela)onship.	The	
plots	to	the	right	show	the	sca?ering	signal	
as	expressed	by	high	frequency	GMI	Tb	
plo?ed	as	a	func)on	of	combined	algorithm	
rain	rate	(x-axis)	and	soil	moisture	(colors).	
As	frequency	increases,	the	soil	moisture	
lines	separate	visibly,	sugges)ng	that	soil	
moisture	may	act	as	a	marker	of	boundary	
layer	characteris)cs	defining	the	sca?ering	
height.		

Figure	1:	FROM	KIDD	ET	AL.	2017:	Normalised	density	sca?erplots	of	the	V05	GPROF	and	DPR-Ku	
precipita)on	products	versus	surface	radar	data	over	the	United	States	region;	all	products	are	compared	
at	a	nominal	resolu)on	of	15x15km	(note	that	zero	values	are	plo?ed	along	the	x	and	y	axes)				

18.7	GHz	H	

89	GHz	H	
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A	possible	scheme	for	inves)ga)ng	this	
rela)onship	is	diagrammed	here:	A	land	surface	
model	is	coupled	to	an	atmospheric	model	and	
matched	with	GPM	core	observa)ons.	Columns	
are	simulated	and	op)mized	to	be	physically	
consistent	with	both	models	and	observa)ons,	
similar	to	a	combined	retrieval	or	data	
assimila)on	scheme.	Resul)ng	data	could	be	
used	for	inves)ga)ng	the	rela)onship	between	
observed	sca?ering,	the	nature	of	the	
precipita)on,	and	observed	precipita)on	at	the	
surface.	This	knowledge	could	then	be	applied	
directly	to	algorithm	improvement	in	both	
simula)on	and	retrieval	indexing.	

Figure	2:	GPM	core	satellite	overpass	February	1,	2015.	The	top	le;	panel	shows	sca?ering	apparent	in	
the	observed	89	GHz	GMI	Tb.	The	MS	combined	rain	rate	is	shown	below,	with	the	GPROF	retrievals	
plo?ed	in	the	panel	on	the	right.		

The	GPM	GPROF	retrieval	
algorithm	database	includes	
one	year	of	combined	DPR-GMI	
observa)ons	and	retrievals	
which	can	be	used	in	
combina)on	with	radia)ve	
transfer	for	applica)on	to	other	
constella)on	members	in	a	
consistent	retrieval	framework.	
This	database	contains	a	wealth	
of	informa)on	for	examina)on	
of	connec)ons	between	
observables	and	other	ancillary	
data	fields.			

In	order	to	examine	the	rela)onship	between	observed	Tb,	
radar	rain	rate,	and	surface	characteris)cs,	the	database	is	
enhanced	with	several	ancillary	datasets.	Output	from	the	
NCEP	Noah	land	surface	model	(forced	using	MERRA-2)	is	
a?ached	to	each	GPM	observa)on	along	with	leaf	area	
index	(LAI)	retrieved	from	the	MODIS	instruments	aboard	
NASA	EOS	Aqua	and	Terra	satellites.	The	panel	above	
illustrates	the	visible	rela)onships	between	these	fields	and	
GMI	observa)ons.	Previous	work	(panel	to	the	le;)	using	
AMSR-E	has	demonstrated	that	soil	moisture	and	LAI	are	
clear	indicators	of	the	surface	emissivity,	an	important	
component	of	the	emission	contribu)on	to	Tb	over	land,	
par)cularly	at	the	lower	microwave	frequencies.	At	higher	
frequencies,	the	rela)onship	between	ice	sca?ering	and	
precipita)on	forms	the	basis	of	precipita)on	retrievals.	The	
idea	proposed	here	is	that	the	ancillary	data	holds	
informa)on	about	this	component	as	well.				

Figure	3:	September	2014	GPM	observed	18.7	GHz	Tb	(upper	right),	retrieved	18.7	GHz	emissivity	(lower	right)	
along	with	Noah	LSM	soil	moisture	(upper	le;)	and	MODIS	retrieved	LAI	(lower	le;)		

Figure	4:	One	year	of	retrieved	AMSR-E	cloud-free	emissivity	retrievals	as	a	
func)on	of		MODIS	LAI	and	model	soil	moisture	at	10	GHz.	

The	class-based	retrieval	is	similar	to	the	GPROF	result	of	figure	2.		In	the	emissivity	case,	no	retrieval	is	
performed	over	inland	water	pixels	due	to	the	emissivity	regression	algorithm,	and	values	are	low	due	to	
overstra)fica)on	of	the	database	(not	enough	extreme	precip	values	in	each	bin).	The	soil	moisture	
implementa)on	places	precipita)on	in	the	correct	areas	but	smears	out	the	large	rain	rates	due	to	
underconstraining	of	the	database	(averaging	over	too	many	pixels	in	the	bin).	Obviously	no	conclusions	can	
be	drawn	from	a	single,	simplified	retrieval	test	case,	but	this	suggests	the	need	for	“smart”	database	
indexing	scheme	in	order	to	improve	retrievals	over	land	surfaces,	that	strike	a	balance	between	having	
enough	representa)on	without	over-averaging.	

A	very	simple	Bayesian	retrieval	scheme	is	used	to	retrieve	precipita)on	for	the	case	shown	in	figure	
2.	The	database	is	indexed	in	3	different	ways	–	by	the	surface	classes	defined	in	GPROF,	by	surface	
emissivity,	and	by	4	broad	soil	moisture	categories.		This	is	a	very	simple	test	implementa)on	and	
does	not	include	other	valuable	ancillary	informa)on	such	as	the	TPW	and	2	meter	temperature	used	
in	opera)onal	retrievals.	For	this	reason	results	are	somewhat	low	due	to	the	“smearing”	effect	of	
averaging	over	many	database	pixels.	In	addi)on	no	screening	is	used,	leading	to	widespread	small	
values	of	precipita)on.	No	cross-index	searching	is	allowed.	
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